
Fast Abstractive Summarization with
Reinforce-Selected Sentence Rewriting

Yen-Chun Chen and Mohit Bansal
UNC Chapel Hill

{yenchun, mbansal}@cs.unc.edu

Abstract

Inspired by how humans summarize long
documents, we propose an accurate and
fast summarization model that first selects
salient sentences and then rewrites them
abstractively (i.e., compresses and para-
phrases) to generate a concise overall sum-
mary. We use a novel sentence-level pol-
icy gradient method to bridge the non-
differentiable computation between these
two neural networks in a hierarchical way,
while maintaining language fluency. Em-
pirically, we achieve the new state-of-the-
art on all metrics (including human eval-
uation) on the CNN/Daily Mail dataset, as
well as significantly higher abstractiveness
scores. Moreover, by first operating at
the sentence-level and then the word-level,
we enable parallel decoding of our neural
generative model that results in substan-
tially faster (10-20x) inference speed as
well as 4x faster training convergence than
previous long-paragraph encoder-decoder
models. We also demonstrate the general-
ization of our model on the test-only DUC-
2002 dataset, where we achieve higher
scores than a state-of-the-art model.

1 Introduction

The task of document summarization has two
main paradigms: extractive and abstractive. The
former method directly chooses and outputs the
salient sentences (or phrases) in the original doc-
ument (Jing and McKeown, 2000; Knight and
Marcu, 2000; Martins and Smith, 2009; Berg-
Kirkpatrick et al., 2011). The latter abstractive
approach involves rewriting the summary (Banko
et al., 2000; Zajic et al., 2004), and has seen sub-
stantial recent gains due to neural sequence-to-

sequence models (Chopra et al., 2016; Nallap-
ati et al., 2016; See et al., 2017; Paulus et al.,
2018). Abstractive models can be more concise
by performing generation from scratch, but they
suffer from slow and inaccurate encoding of very
long documents, with the attention model being
required to look at all encoded words (in long
paragraphs) for decoding each generated summary
word (slow, one by one sequentially). Abstrac-
tive models also suffer from redundancy (repeti-
tions), especially when generating multi-sentence
summary.

To address both these issues and combine
the advantages of both paradigms, we pro-
pose a hybrid extractive-abstractive architecture,
with policy-based reinforcement learning (RL) to
bridge together the two networks. Similar to how
humans summarize long documents, our model
first uses an extractor agent to select salient sen-
tences or highlights, and then employs an abstrac-
tor network to rewrite (i.e., compress and para-
phrase) each of these extracted sentences. To over-
come the non-differentiable behavior of our ex-
tractor and train on available document-summary
pairs without saliency label, we next use actor-
critic policy gradient with sentence-level metric
rewards to connect these two neural networks and
to learn sentence saliency. We also avoid com-
mon language fluency issues (Paulus et al., 2018)
by preventing the policy gradients from affect-
ing the abstractive summarizer’s word-level train-
ing, which is supported by our human evaluation
study. Our sentence-level reinforcement learn-
ing takes into account the word-sentence hierar-
chy, which better models the language structure
and makes parallelization possible. Our extractor
combines reinforcement learning and pointer net-
works, which is inspired by Bello et al. (2017)’s
attempt to solve the Traveling Salesman Problem.
Our abstractor is a simple encoder-aligner-decoder

ar
X

iv
:1

80
5.

11
08

0v
1

 [
cs

.C
L

]
 2

8
M

ay
 2

01
8

model (with copying) and is trained on pseudo
document-summary sentence pairs obtained via
simple automatic matching criteria.

Thus, our method incorporates the abstractive
paradigm’s advantages of concisely rewriting sen-
tences and generating novel words from the full
vocabulary, yet it adopts intermediate extractive
behavior to improve the overall model’s quality,
speed, and stability. Instead of encoding and at-
tending to every word in the long input document
sequentially, our model adopts a human-inspired
coarse-to-fine approach that first extracts all the
salient sentences and then decodes (rewrites) them
(in parallel). This also avoids almost all redun-
dancy issues because the model has already cho-
sen non-redundant salient sentences to abstrac-
tively summarize (but adding an optional final
reranker component does give additional gains by
removing the fewer across-sentence repetitions).

Empirically, our approach is the new state-of-
the-art on all ROUGE metrics (Lin, 2004) as well
as on METEOR (Denkowski and Lavie, 2014)
of the CNN/Daily Mail dataset, achieving sta-
tistically significant improvements over previous
models that use complex long-encoder, copy, and
coverage mechanisms (See et al., 2017). The
test-only DUC-2002 improvement also shows our
model’s better generalization than this strong ab-
stractive system. In addition, we surpass the pop-
ular lead-3 baseline on all ROUGE scores with an
abstractive model. Moreover, our sentence-level
abstractive rewriting module also produces sub-
stantially more (3x) novel N -grams that are not
seen in the input document, as compared to the
strong flat-structured model of See et al. (2017).
This empirically justifies that our RL-guided ex-
tractor has learned sentence saliency, rather than
benefiting from simply copying longer sentences.
We also show that our model maintains the same
level of fluency as a conventional RNN-based
model because the reward does not leak to our ab-
stractor’s word-level training. Finally, our model’s
training is 4x and inference is more than 20x faster
than the previous state-of-the-art. The optional
final reranker gives further improvements while
maintaining a 7x speedup.

Overall, our contribution is three fold: First
we propose a novel sentence-level RL technique
for the well-known task of abstractive summariza-
tion, effectively utilizing the word-then-sentence
hierarchical structure without annotated matching

sentence-pairs between the document and ground
truth summary. Next, our model achieves the
new state-of-the-art on all metrics of multiple ver-
sions of a popular summarization dataset (as well
as a test-only dataset) both extractively and ab-
stractively, without loss in language fluency (also
demonstrated via human evaluation and abstrac-
tiveness scores). Finally, our parallel decoding re-
sults in a significant 10-20x speed-up over the pre-
vious best neural abstractive summarization sys-
tem with even better accuracy.1

2 Model

In this work, we consider the task of summa-
rizing a given long text document into several
(ordered) highlights, which are then combined
to form a multi-sentence summary. Formally,
given a training set of document-summary pairs
{xi, yi}Ni=1, our goal is to approximate the func-
tion h : X → Y,X = {xi}Ni=1, Y = {yi}Ni=1

such that h(xi) = yi, 1 ≤ i ≤ N . Further-
more, we assume there exists an abstracting func-
tion g defined as: ∀s ∈ Si,∃d ∈ Di such that
g(d) = s, 1 ≤ i ≤ N , where Si is the set of sum-
mary sentences in xi and Di the set of document
sentences in yi. i.e., in any given pair of docu-
ment and summary, every summary sentence can
be produced from some document sentence. For
simplicity, we omit subscript i in the remainder
of the paper. Under this assumption, we can fur-
ther define another latent function f : X → Dn

that satisfies f(x) = {dt}nj=1 and y = h(x) =
[g(d1), g(d2), . . . , g(dn)], where [,] denotes sen-
tence concatenation. This latent function f can be
seen as an extractor that chooses the salient (or-
dered) sentences in a given document for the ab-
stracting function g to rewrite. Our overall model
consists of these two submodules, the extractor
agent and the abstractor network, to approximate
the above-mentioned f and g, respectively.

2.1 Extractor Agent

The extractor agent is designed to model f , which
can be thought of as extracting salient sentences
from the document. We exploit a hierarchical neu-
ral model to learn the sentence representations of
the document and a ‘selection network’ to extract
sentences based on their representations.

1We are releasing our code, best pretrained models,
as well as output summaries, to promote future research:
https://github.com/ChenRocks/fast_abs_rl

https://github.com/ChenRocks/fast_abs_rl

bi-LSTM

bi-LSTM

bi-LSTM

bi-LSTM
Encoded Sentence Representations

r1

r2

r3

r4

h0

h1

h4

r1

r2

r3

r4

h0

h1

h4

r1

r2

r3

r4

h0

h1

h4

r1

r2

r3

r4

h0

h1

h4

LSTM

LSTM

LSTM

Extraction Probabilities (Policy)

r1

r2

r3

r4

h0

h1

h4

r1

r2

r3

r4

h0

h1

h4

r1

r2

r3

r4

h0

h1

h4

Context-aware Sent. Reps.
(from previous extraction step)

C
O

N
V

Em
bedded W

ord Vectors

Convolutional Sentence Encoder

Figure 1: Our extractor agent: the convolutional encoder computes representation rj for each sentence.
The RNN encoder (blue) computes context-aware representation hj and then the RNN decoder (green)
selects sentence jt at time step t. With jt selected, hjt will be fed into the decoder at time t+ 1.

2.1.1 Hierarchical Sentence Representation
We use a temporal convolutional model (Kim,
2014) to compute rj , the representation of each in-
dividual sentence in the documents (details in sup-
plementary). To further incorporate global context
of the document and capture the long-range se-
mantic dependency between sentences, a bidirec-
tional LSTM-RNN (Hochreiter and Schmidhuber,
1997; Schuster et al., 1997) is applied on the con-
volutional output. This enables learning a strong
representation, denoted as hj for the j-th sentence
in the document, that takes into account the con-
text of all previous and future sentences in the
same document.

2.1.2 Sentence Selection
Next, to select the extracted sentences based on the
above sentence representations, we add another
LSTM-RNN to train a Pointer Network (Vinyals
et al., 2015), to extract sentences recurrently. We
calculate the extraction probability by:

utj =

v>p tanh(Wp1hj +Wp2et) if jt 6= jk

∀k < t

−∞ otherwise
(1)

P (jt|j1, . . . , jt−1) = softmax(ut) (2)
where et’s are the output of the glimpse opera-
tion (Vinyals et al., 2016):

atj = v>g tanh(Wg1hj +Wg2zt) (3)

αt = softmax(at) (4)

et =
∑
j

αtjWg1hj (5)

Abstractor

d1 d2 d3 d4 d5 djt g(djt) st

d1 d2 d3 d4 d5 djt g(djt) st

Summary	Sentence
(ground	truth)

d1 d2 d3 d4 d5 djt g(djt) st

Generated	Sentence

Reward

RL Agent

Extractor

Policy Gradient
Update

Observation

d1 d2 d3 d4 d5 djt g(djt) st

d1 d2 d3 d4 d5 djt g(djt) st

d1 d2 d3 d4 d5 djt g(djt) st

d1 d2 d3 d4 d5 djt g(djt) st

Document	Sentences

Action (extract sent.)

Figure 2: Reinforced training of the extractor (for
one extraction step) and its interaction with the ab-
stractor. For simplicity, the critic network is not
shown. Note that all d’s and st are raw sentences,
not vector representations.

In Eqn. 3, zt is the output of the added LSTM-
RNN (shown in green in Fig. 1) which is referred
to as the decoder. All theW ’s and v’s are trainable
parameters. At each time step t, the decoder per-
forms a 2-hop attention mechanism: It first attends
to hj’s to get a context vector et and then attends
to hj’s again for the extraction probabilities.2 This
model is essentially classifying all sentences of the
document at each extraction step. An illustration
of the whole extractor is shown in Fig. 1.

2.2 Abstractor Network

The abstractor network approximates g, which
compresses and paraphrases an extracted docu-
ment sentence to a concise summary sentence. We

2Note that we force-zero the extraction prob. of already
extracted sentences so as to prevent the model from using re-
peating document sentences and suffering from redundancy.
This is non-differentiable and hence only done in RL training.

use the standard encoder-aligner-decoder (Bah-
danau et al., 2015; Luong et al., 2015). We add the
copy mechanism3 to help directly copy some out-
of-vocabulary (OOV) words (See et al., 2017). For
more details, please refer to the supplementary.

3 Learning

Given that our extractor performs a non-
differentiable hard extraction, we apply stan-
dard policy gradient methods to bridge the back-
propagation and form an end-to-end trainable
(stochastic) computation graph. However, sim-
ply starting from a randomly initialized network
to train the whole model in an end-to-end fash-
ion is infeasible. When randomly initialized, the
extractor would often select sentences that are
not relevant, so it would be difficult for the ab-
stractor to learn to abstractively rewrite. On the
other hand, without a well-trained abstractor the
extractor would get noisy reward, which leads
to a bad estimate of the policy gradient and a
sub-optimal policy. We hence propose optimiz-
ing each sub-module separately using maximum-
likelihood (ML) objectives: train the extractor to
select salient sentences (fit f) and the abstractor to
generate shortened summary (fit g). Finally, RL is
applied to train the full model end-to-end (fit h).

3.1 Maximum-Likelihood Training for
Submodules

Extractor Training: In Sec. 2.1.2, we have
formulated our sentence selection as classifica-
tion. However, most of the summarization datasets
are end-to-end document-summary pairs with-
out extraction (saliency) labels for each sentence.
Hence, we propose a simple similarity method to
provide a ‘proxy’ target label for the extractor.
Similar to the extractive model of Nallapati et al.
(2017), for each ground-truth summary sentence,
we find the most similar document sentence djt
by:4

jt = argmaxi(ROUGE-Lrecall(di, st)) (6)

Given these proxy training labels, the extractor is
then trained to minimize the cross-entropy loss.

3We use the terminology of copy mechanism (originally
named pointer-generator) in order to avoid confusion with
the pointer network (Vinyals et al., 2015).

4Nallapati et al. (2017) selected sentences greedily to
maximize the global summary-level ROUGE, whereas we
match exactly 1 document sentence for each GT summary
sentence based on the individual sentence-level score.

Abstractor Training: For the abstractor training,
we create training pairs by taking each summary
sentence and pairing it with its extracted docu-
ment sentence (based on Eqn. 6). The network
is trained as an usual sequence-to-sequence model
to minimize the cross-entropy loss L(θabs) =
− 1
M

∑M
m=1 logPθabs(wm|w1:m−1) of the decoder

language model at each generation step, where
θabs is the set of trainable parameters of the ab-
stractor and wm the mth generated word.

3.2 Reinforce-Guided Extraction
Here we explain how policy gradient techniques
are applied to optimize the whole model. To
make the extractor an RL agent, we can formu-
late a Markov Decision Process (MDP)5: at each
extraction step t, the agent observes the current
state ct = (D, djt−1), samples an action jt ∼
πθa,ω(ct, j) = P (j) from Eqn. 2 to extract a doc-
ument sentence and receive a reward6

r(t+ 1) = ROUGE-LF1(g(djt), st) (7)

after the abstractor summarizes the extracted sen-
tence djt . We denote the trainable parameters of
the extractor agent by θ = {θa, ω} for the decoder
and hierarchical encoder respectively. We can then
train the extractor with policy-based RL. We illus-
trate this process in Fig. 2.

The vanilla policy gradient algorithm, REIN-
FORCE (Williams, 1992), is known for high vari-
ance. To mitigate this problem, we add a critic
network with trainable parameters θc to predict
the state-value function V πθa,ω(c). The predicted
value of critic bθc,ω(c) is called the ‘baseline’,
which is then used to estimate the advantage func-
tion: Aπθ(c, j) = Qπθa,ω(c, j) − V πθa,ω(c) be-
cause the total return Rt is an estimate of action-
value function Q(ct, jt). Instead of maximizing
Q(ct, jt) as done in REINFORCE, we maximize
Aπθ(c, j) with the following policy gradient:

∇θa,ωJ(θa, ω) =
E[∇θa,ωlogπθ(c, j)Aπθ(c, j)]

(8)

And the critic is trained to minimize the square
loss: Lc(θc, ω) = (bθc,ω(ct) − Rt)

2. This is
5Strictly speaking, this is a Partially Observable Markov

Decision Process (POMDP). We approximate it as an MDP
by assuming that the RNN hidden state contains all past info.

6In Eqn. 6, we use ROUGE-recall because we want the
extracted sentence to contain as much information as possible
for rewriting. Nevertheless, for Eqn. 7, ROUGE-F1 is more
suitable because the abstractor g is supposed to rewrite the
extracted sentence d to be as concise as the ground truth s.

known as the Advantage Actor-Critic (A2C), a
synchronous variant of A3C (Mnih et al., 2016).
For more A2C details, please refer to the supp.

Intuitively, our RL training works as follow: If
the extractor chooses a good sentence, after the ab-
stractor rewrites it the ROUGE match would be
high and thus the action is encouraged. If a bad
sentence is chosen, though the abstractor still pro-
duces a compressed version of it, the summary
would not match the ground truth and the low
ROUGE score discourages this action. Our RL
with a sentence-level agent is a novel attempt in
neural summarization. We use RL as a saliency
guide without altering the abstractor’s language
model, while previous work applied RL on the
word-level, which could be prone to gaming the
metric at the cost of language fluency.7

Learning how many sentences to extract: In a
typical RL setting like game playing, an episode
is usually terminated by the environment. On the
other hand, in text summarization, the agent does
not know in advance how many summary sentence
to produce for a given article (since the desired
length varies for different downstream applica-
tions). We make an important yet simple, intuitive
adaptation to solve this: by adding a ‘stop’ ac-
tion to the policy action space. In the RL training
phase, we add another set of trainable parameters
vEOE (EOE stands for ‘End-Of-Extraction’) with
the same dimension as the sentence representation.
The pointer-network decoder treats vEOE as one
of the extraction candidates and hence naturally
results in a stop action in the stochastic policy.
We set the reward for the agent performing EOE
to ROUGE-1F1([{g(djt)}t], [{st}t]); whereas for
any extraneous, unwanted extraction step, the
agent receives zero reward. The model is there-
fore encouraged to extract when there are still re-
maining ground-truth summary sentences (to ac-
cumulate intermediate reward), and learn to stop
by optimizing a global ROUGE and avoiding extra
extraction.8 Overall, this modification allows dy-

7During this RL training of the extractor, we keep the ab-
stractor parameters fixed. Because the input sentences for the
abstractor are extracted by an intermediate stochastic policy
of the extractor, it is impossible to find the correct target sum-
mary for the abstractor to fit g with ML objective. Though it
is possible to optimize the abstractor with RL, in out prelim-
inary experiments we found that this does not improve the
overall ROUGE, most likely because this RL optimizes at a
sentence-level and can add across-sentence redundancy. We
achieve SotA results without this abstractor-level RL.

8We use ROUGE-1 for terminal reward because it is a
better measure of bag-of-words information (i.e., has all the

namic decisions of number-of-sentences based on
the input document, eliminates the need for tuning
a fixed number of steps, and enables a data-driven
adaptation for any specific dataset/application.

3.3 Repetition-Avoiding Reranking
Existing abstractive summarization systems on
long documents suffer from generating repeating
and redundant words and phrases. To mitigate
this issue, See et al. (2017) propose the coverage
mechanism and Paulus et al. (2018) incorporate
tri-gram avoidance during beam-search at test-
time. Our model without these already performs
well because the summary sentences are gener-
ated from mutually exclusive document sentences,
which naturally avoids redundancy. However, we
do get a small further boost to the summary quality
by removing a few ‘across-sentence’ repetitions,
via a simple reranking strategy: At sentence-level,
we apply the same beam-search tri-gram avoid-
ance (Paulus et al., 2018). We keep all k sentence
candidates generated by beam search, where k is
the size of the beam. Next, we then rerank all
kn combinations of the n generated summary sen-
tence beams. The summaries are reranked by the
number of repeated N -grams, the smaller the bet-
ter. We also apply the diverse decoding algorithm
described in Li et al. (2016) (which has almost no
computation overhead) so as to get the above ap-
proach to produce useful diverse reranking lists.
We show how much the redundancy affects the
summarization task in Sec. 6.2.

4 Related Work

Early summarization works mostly focused on ex-
tractive and compression based methods (Jing and
McKeown, 2000; Knight and Marcu, 2000; Clarke
and Lapata, 2010; Berg-Kirkpatrick et al., 2011;
Filippova et al., 2015). Recent large-sized corpora
attracted neural methods for abstractive summa-
rization (Rush et al., 2015; Chopra et al., 2016).
Some of the recent success in neural abstractive
models include hierarchical attention (Nallapati
et al., 2016), coverage (Suzuki and Nagata, 2016;
Chen et al., 2016; See et al., 2017), RL based met-
ric optimization (Paulus et al., 2018), graph-based
attention (Tan et al., 2017), and the copy mecha-
nism (Miao and Blunsom, 2016; Gu et al., 2016;
See et al., 2017).

important information been generated); while ROUGE-L is
used as intermediate rewards since it is known for better mea-
surement of language fluency within a local sentence.

Our model shares some high-level intuition with
extract-then-compress methods. Earlier attempts
in this paradigm used Hidden Markov Models and
rule-based systems (Jing and McKeown, 2000),
statistical models based on parse trees (Knight
and Marcu, 2000), and integer linear programming
based methods (Martins and Smith, 2009; Gillick
and Favre, 2009; Clarke and Lapata, 2010; Berg-
Kirkpatrick et al., 2011). Recent approaches in-
vestigated discourse structures (Louis et al., 2010;
Hirao et al., 2013; Kikuchi et al., 2014; Wang
et al., 2015), graph cuts (Qian and Liu, 2013),
and parse trees (Li et al., 2014; Bing et al., 2015).
For neural models, Cheng and Lapata (2016) used
a second neural net to select words from an ex-
tractor’s output. Our abstractor does not merely
‘compress’ the sentences but generatively produce
novel words. Moreover, our RL bridges the ex-
tractor and the abstractor for end-to-end training.

Reinforcement learning has been used to op-
timize the non-differential metrics of language
generation and to mitigate exposure bias (Ran-
zato et al., 2016; Bahdanau et al., 2017). Henß
et al. (2015) use Q-learning based RL for extrac-
tive summarization. Paulus et al. (2018) use RL
policy gradient methods for abstractive summa-
rization, utilizing sequence-level metric rewards
with curriculum learning (Ranzato et al., 2016)
or weighted ML+RL mixed loss (Paulus et al.,
2018) for stability and language fluency. We use
sentence-level rewards to optimize the extractor
while keeping our ML trained abstractor decoder
fixed, so as to achieve the best of both worlds.

Training a neural network to use another fixed
network has been investigated in machine trans-
lation for better decoding (Gu et al., 2017a) and
real-time translation (Gu et al., 2017b). They used
a fixed pretrained translator and applied policy
gradient techniques to train another task-specific
network. In question answering (QA), Choi et al.
(2017) extract one sentence and then generate the
answer from the sentence’s vector representation
with RL bridging. Another recent work attempted
a new coarse-to-fine attention approach on sum-
marization (Ling and Rush, 2017) and found de-
sired sharp focus properties for scaling to larger in-
puts (though without metric improvements). Very
recently (concurrently), Narayan et al. (2018) use
RL for ranking sentences in pure extraction-based
summarization and Çelikyilmaz et al. (2018) in-
vestigate multiple communicating encoder agents

to enhance the copying abstractive summarizer.
Finally, there are some loosely-related recent

works: Zhou et al. (2017) proposed selective gate
to improve the attention in abstractive summa-
rization. Tan et al. (2018) used an extract-then-
synthesis approach on QA, where an extraction
model predicts the important spans in the passage
and then another synthesis model generates the fi-
nal answer. Swayamdipta et al. (2017) attempted
cascaded non-recurrent small networks on extrac-
tive QA, resulting a scalable, parallelizable model.
Fan et al. (2017) added controlling parameters to
adapt the summary to length, style, and entity pref-
erences. However, none of these used RL to bridge
the non-differentiability of neural models.

5 Experimental Setup

Please refer to the supplementary for full training
details (all hyperparameter tuning was performed
on the validation set). We use the CNN/Daily Mail
dataset (Hermann et al., 2015) modified for sum-
marization (Nallapati et al., 2016). Because there
are two versions of the dataset, original text and
entity anonymized, we show results on both ver-
sions of the dataset for a fair comparison to prior
works. The experiment runs training and evalu-
ation for each version separately. Despite the fact
that the 2 versions have been considered separately
by the summarization community as 2 different
datasets, we use same hyper-parameter values for
both dataset versions to show the generalization of
our model. We also show improvements on the
DUC-2002 dataset in a test-only setup.

5.1 Evaluation Metrics

For all the datasets, we evaluate standard ROUGE-
1, ROUGE-2, and ROUGE-L (Lin, 2004) on full-
length F1 (with stemming) following previous
works (Nallapati et al., 2017; See et al., 2017;
Paulus et al., 2018). Following See et al. (2017),
we also evaluate on METEOR (Denkowski and
Lavie, 2014) for a more thorough analysis.

5.2 Modular Extractive vs. Abstractive

Our hybrid approach is capable of both extrac-
tive and abstractive (i.e., rewriting every sentence)
summarization. The extractor alone performs ex-
tractive summarization. To investigate the effect of
the recurrent extractor (rnn-ext), we implement a
feed-forward extractive baseline ff-ext (details in
supplementary). It is also possible to apply RL

Models ROUGE-1 ROUGE-2 ROUGE-L METEOR
Extractive Results

lead-3 (See et al., 2017) 40.34 17.70 36.57 22.21
Narayan et al. (2018) (sentence ranking RL) 40.0 18.2 36.6 -
ff-ext 40.63 18.35 36.82 22.91
rnn-ext 40.17 18.11 36.41 22.81
rnn-ext + RL 41.47 18.72 37.76 22.35

Abstractive Results
See et al. (2017) (w/o coverage) 36.44 15.66 33.42 16.65
See et al. (2017) 39.53 17.28 36.38 18.72
Fan et al. (2017) (controlled) 39.75 17.29 36.54 -
ff-ext + abs 39.30 17.02 36.93 20.05
rnn-ext + abs 38.38 16.12 36.04 19.39
rnn-ext + abs + RL 40.04 17.61 37.59 21.00
rnn-ext + abs + RL + rerank 40.88 17.80 38.54 20.38

Table 1: Results on the original, non-anonymized CNN/Daily Mail dataset. Adding RL gives statisti-
cally significant improvements for all metrics over non-RL rnn-ext models (and over the state-of-the-art
See et al. (2017)) in both extractive and abstractive settings with p < 0.01. Adding the extra reranking
stage yields statistically significant better results in terms of all ROUGE metrics with p < 0.01.

to extractor without using the abstractor (rnn-ext
+ RL).9 Benefiting from the high modularity of
our model, we can make our summarization sys-
tem abstractive by simply applying the abstractor
on the extracted sentences. Our abstractor rewrites
each sentence and generates novel words from a
large vocabulary, and hence every word in our
overall summary is generated from scratch; mak-
ing our full model categorized into the abstractive
paradigm.10 We run experiments on separately
trained extractor/abstractor (ff-ext + abs, rnn-ext +
abs) and the reinforced full model (rnn-ext + abs +
RL) as well as the final reranking version (rnn-ext
+ abs + RL + rerank).

6 Results

For easier comparison, we show separate tables
for the original-text vs. anonymized versions –
Table 1 and Table 2, respectively. Overall, our
model achieves strong improvements and the new
state-of-the-art on both extractive and abstractive
settings for both versions of the CNN/DM dataset
(with some comparable results on the anonymized
version). Moreover, Table 3 shows the gener-
alization of our abstractive system to an out-of-
domain test-only setup (DUC-2002), where our
model achieves better scores than See et al. (2017).

6.1 Extractive Summarization

In the extractive paradigm, we compare our model
with the extractive model from Nallapati et al.

9In this case the abstractor function g(d) = d.
10Note that the abstractive CNN/DM dataset does not in-

clude any human-annotated extraction label, and hence our
models do not receive any direct extractive supervision.

Models R-1 R-2 R-L
Extractive Results

lead-3 (Nallapati et al., 2017) 39.2 15.7 35.5
Nallapati et al. (2017) 39.6 16.2 35.3
ff-ext 39.51 16.85 35.80
rnn-ext 38.97 16.65 35.32
rnn-ext + RL 40.13 16.58 36.47

Abstractive Results
Nallapati et al. (2016) 35.46 13.30 32.65
Fan et al. (2017) (controlled) 38.68 15.40 35.47
Paulus et al. (2018) (ML) 38.30 14.81 35.49
Paulus et al. (2018) (RL+ML) 39.87 15.82 36.90
ff-ext + abs 38.73 15.70 36.33
rnn-ext + abs 37.58 14.68 35.24
rnn-ext + abs + RL 38.80 15.66 36.37
rnn-ext + abs + RL + rerank 39.66 15.85 37.34

Table 2: ROUGE for anonymized CNN/DM.

(2017) and a strong lead-3 baseline. For producing
our summary, we simply concatenate the extracted
sentences from the extractors. From Table 1 and
Table 2, we can see that our feed-forward extrac-
tor out-performs the lead-3 baseline, empirically
showing that our hierarchical sentence encoding
model is capable of extracting salient sentences.11

The reinforced extractor performs the best, be-
cause of the ability to get the summary-level re-
ward and the reduced train-test mismatch of feed-
ing the previous extraction decision. The improve-
ment over lead-3 is consistent across both tables.
In Table 2, it outperforms the previous best neural
extractive model (Nallapati et al., 2017). In Ta-
ble 1, our model also outperforms a recent, con-

11The ff-ext model outperforms rnn-ext possibly because
it does not predict sentence ordering; thus is easier to opti-
mize and the n-gram based metrics do not consider sentence
ordering. Also note that in our MDP formulation, we cannot
apply RL on ff-ext due to its historyless nature. Even if ap-
plied naively, there is no mean for the feed-forward model to
learn the EOE described in Sec. 3.2.

Models R-1 R-2 R-L
See et al. (2017) 37.22 15.78 33.90
rnn-ext + abs + RL 39.46 17.34 36.72

Table 3: Generalization to DUC-2002 (F1).

current sentence-ranking RL model by Narayan
et al. (2018), showing that our pointer-network ex-
tractor and reward formulations are very effective
when combined with A2C RL.

6.2 Abstractive Summarization

After applying the abstractor, the ff-ext based
model still out-performs the rnn-ext model. Both
combined models exceed the pointer-generator
model (See et al., 2017) without coverage by a
large margin for all metrics, showing the effec-
tiveness of our 2-step hierarchical approach: our
method naturally avoids repetition by extracting
multiple sentences with different keypoints.12

Moreover, after applying reinforcement learn-
ing, our model performs better than the best model
of See et al. (2017) and the best ML trained model
of Paulus et al. (2018). Our reinforced model out-
performs the ML trained rnn-ext + abs baseline
with statistical significance of p < 0.01 on all met-
rics for both version of the dataset, indicating the
effectiveness of the RL training. Also, rnn-ext +
abs + RL is statistically significant better than See
et al. (2017) for all metrics with p < 0.01.13 In
the supplementary, we show the learning curve of
our RL training, where the average reward goes
up quickly after the extractor learns the End-of-
Extract action and then stabilizes. For all the
above models, we use standard greedy decoding
and find that it performs well.

Reranking and Redundancy Although the
extract-then-abstract approach inherently will not
generate repeating sentences like other neural-
decoders do, there might still be across-sentence
redundancy because the abstractor is not aware
of other extracted sentences when decoding one.
Hence, we incorporate an optional reranking strat-
egy described in Sec. 3.3. The improved ROUGE
scores indicate that this successfully removes
some remaining redundancies and hence produces
more concise summaries. Our best abstractive

12A trivial lead-3 + abs baseline obtains ROUGE of
(37.37, 15.59, 34.82), which again confirms the importance
of our reinforce-based sentence selection.

13We calculate statistical significance based on the boot-
strap test (Noreen, 1989; Efron and Tibshirani, 1994) with
100K samples. Output of Paulus et al. (2018) is not available
so we couldn’t test for statistical significance there.

Relevance Readability Total
See et al. (2017) 120 128 248
rnn-ext + abs + RL + rerank 137 133 270
Equally good/bad 43 39 82

Table 4: Human Evaluation: pairwise comparison
between our final model and See et al. (2017).

model (rnn-ext + abs + RL + rerank) is clearly su-
perior than the one of See et al. (2017). We are
comparable on R-1 and R-2 but a 0.4 point im-
provement on R-L w.r.t. Paulus et al. (2018).14

We also outperform the results of Fan et al. (2017)
on both original and anonymized dataset versions.
Several previous works have pointed out that ex-
tractive baselines are very difficult to beat (in
terms of ROUGE) by an abstractive system (See
et al., 2017; Nallapati et al., 2017). Note that our
best model is one of the first abstractive models
to outperform the lead-3 baseline on the original-
text CNN/DM dataset. Our extractive experiment
serves as a complementary analysis of the effect of
RL with extractive systems.

6.3 Human Evaluation

We also conduct human evaluation to ensure ro-
bustness of our training procedure. We measure
relevance and readability of the summaries. Rel-
evance is based on the summary containing im-
portant, salient information from the input article,
being correct by avoiding contradictory/unrelated
information, and avoiding repeated/redundant in-
formation. Readability is based on the summa-
rys fluency, grammaticality, and coherence. To
evaluate both these criteria, we design the follow-
ing Amazon MTurk experiment: we randomly se-
lect 100 samples from the CNN/DM test set and
ask the human testers (3 for each sample) to rank
between summaries (for relevance and readabil-
ity) produced by our model and that of See et al.
(2017) (the models were anonymized and ran-
domly shuffled), i.e. A is better, B is better, both
are equally good/bad. Following previous work,
the input article and ground truth summaries are
also shown to the human participants in addition
to the two model summaries.15 From the results
shown in Table 4, we can see that our model is
better in both relevance and readability w.r.t. See
et al. (2017).

14We do not list the scores of their pure RL model because
they discussed its bad readability.

15We selected human annotators that were located in the
US, had an approval rate greater than 95%, and had at least
10,000 approved HITs on record.

Speed
Models total time (hr) words / sec
(See et al., 2017) 12.9 14.8
rnn-ext + abs + RL 0.68 361.3
rnn-ext + abs + RL + rerank 2.00 (1.46 +0.54) 109.8

Table 5: Speed comparison with See et al. (2017).

6.4 Speed Comparison

Our two-stage extractive-abstractive hybrid model
is not only the SotA on summary quality met-
rics, but more importantly also gives a significant
speed-up in both train and test time over a strong
neural abstractive system (See et al., 2017).16

Our full model is composed of a extremely fast
extractor and a parallelizable abstractor, where the
computation bottleneck is on the abstractor, which
has to generate summaries with a large vocabulary
from scratch.17 The main advantage of our ab-
stractor at decoding time is that we can first com-
pute all the extracted sentences for the document,
and then abstract every sentence concurrently (in
parallel) to generate the overall summary. In Ta-
ble 5, we show the substantial test-time speed-up
of our model compared to See et al. (2017).18 We
calculate the total decoding time for producing all
summaries for the test set.19 Due to the fact that
the main test-time speed bottleneck of RNN lan-
guage generation model is that the model is con-
strained to generate one word at a time, the total
decoding time is dependent on the number of to-
tal words generated; we hence also report the de-
coded words per second for a fair comparison. Our
model without reranking is extremely fast. From
Table 5 we can see that we achieve a speed up of
18x in time and 24x in word generation rate. Even
after adding the (optional) reranker, we still main-
tain a 6-7x speed-up (and hence a user can choose
to use the reranking component depending on their
downstream application’s speed requirements).20

16The only publicly available code with a pretrained model
for neural summarization which we can test the speed.

17The time needed for extractor is negligible w.r.t. the ab-
stractor because it does not require large matrix multiplica-
tion for generating every word. Moreover, with convolutional
encoder at word-level made parallelizable by the hierarchical
rnn-ext, our model is scalable for very long documents.

18For details of training speed-up, please see the supp.
19We time the model of See et al. (2017) using beam size of

4 (used for their best-reported scores). Without beam-search,
it gets significantly worse ROUGE of (36.62, 15.12, 34.08),
so we do not compare speed-ups w.r.t. that version.

20Most of the recent neural abstractive summarization sys-
tems are of similar algorithmic complexity to that of See et al.
(2017). The main differences such as the training objective
(ML vs. RL) and copying (soft/hard) has negligible test run-
time compared to the slowest component: the long-summary

Novel N -gram (%)
Models 1-gm 2-gm 3-gm 4-gm
See et al. (2017) 0.1 2.2 6.0 9.7
rnn-ext + abs + RL + rerank 0.3 10.0 21.7 31.6
reference summaries 10.8 47.5 68.2 78.2

Table 6: Abstractiveness: novel n-gram counts.

7 Analysis

7.1 Abstractiveness

We compute an abstractiveness score (See et al.,
2017) as the ratio of novel n-grams in the gen-
erated summary that are not present in the in-
put document. The results are shown in Table 6:
our model rewrites substantially more abstractive
summaries than previous work. A potential rea-
son for this is that when trained with individual
sentence-pairs, the abstractor learns to drop more
document words so as to write individual sum-
mary sentences as concise as human-written ones;
thus the improvement in multi-gram novelty.

7.2 Qualitative Analysis on Output Examples

We show examples of how our best model selects
sentences and then rewrites them. In the supple-
mentary Fig. 4 and Fig. 5, we can see how the ab-
stractor rewrites the extracted sentences concisely
while keeping the mentioned facts. Adding the
reranker makes the output more compact globally.
We observe that when rewriting longer text, the
abstractor would have many facts to choose from
(Fig. 5 sentence 2) and this is where the reranker
helps avoid redundancy across sentences.

8 Conclusion

We propose a novel sentence-level RL model
for abstractive summarization, which makes the
model aware of the word-sentence hierarchy. Our
model achieves the new state-of-the-art on both
CNN/DM versions as well a better generalization
on test-only DUC-2002, along with a significant
speed-up in training and decoding.

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments. This work was supported by a
Google Faculty Research Award, a Bloomberg
Data Science Research Grant, an IBM Faculty
Award, and NVidia GPU awards.

attentional-decoder’s sequential generation; and this is the
component that we substantially speed up via our parallel
sentence decoding with sentence-selection RL.

References
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,

Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Michele Banko, Vibhu O. Mittal, and Michael J. Wit-
brock. 2000. Headline generation based on statis-
tical translation. In Proceedings of the 38th An-
nual Meeting on Association for Computational Lin-
guistics, ACL ’00, pages 318–325, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad
Norouzi, and Samy Bengio. 2017. Neural combi-
natorial optimization with reinforcement learning.
arXiv preprint 1611.09940.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, HLT ’11, pages
481–490, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei
Guo, and Rebecca J. Passonneau. 2015. Abstractive
multi-document summarization via phrase selection
and merging. In ACL.

Asli Çelikyilmaz, Antoine Bosselut, Xiaodong He, and
Yejin Choi. 2018. Deep communicating agents for
abstractive summarization. NAACL-HLT.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Distraction-based neural networks
for modeling documents. In IJCAI.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 484–494, Berlin, Germany.
Association for Computational Linguistics.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-fine question answering for
long documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 209–220.
Association for Computational Linguistics.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98, San
Diego, California. Association for Computational
Linguistics.

James Clarke and Mirella Lapata. 2010. Discourse
constraints for document compression. Computa-
tional Linguistics, 36(3):411–441.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Angela Fan, David Grangier, and Michael Auli. 2017.
Controllable abstractive summarization. arXiv
preprint, abs/1711.05217.

Katja Filippova, Enrique Alfonseca, Carlos Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP’15).

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Nat-
ural Langauge Processing, ILP ’09, pages 10–18,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Jiatao Gu, Kyunghyun Cho, and Victor O. K. Li. 2017a.
Trainable greedy decoding for neural machine trans-
lation. In EMNLP.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O. K. Li. 2017b. Learning to translate in real-
time with neural machine translation. In EACL.

Sebastian Henß, Margot Mieskes, and Iryna Gurevych.
2015. A reinforcement learning approach for adap-
tive single- and multi-document summarization. In
International Conference of the German Society for
Computational Linguistics and Language Technol-
ogy (GSCL-2015), pages 3–12.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013.
Single-document summarization as a tree knapsack
problem. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1515–1520, Seattle, Washington, USA.
Association for Computational Linguistics.

http://arxiv.org/abs/1607.07086
http://arxiv.org/abs/1607.07086
https://doi.org/10.3115/1075218.1075259
https://doi.org/10.3115/1075218.1075259
https://openreview.net/pdf?id=Bk9mxlSFx
https://openreview.net/pdf?id=Bk9mxlSFx
http://dl.acm.org/citation.cfm?id=2002472.2002534
http://arxiv.org/abs/1803.10357
http://arxiv.org/abs/1803.10357
http://www.aclweb.org/anthology/P16-1046
http://www.aclweb.org/anthology/P16-1046
https://doi.org/10.18653/v1/P17-1020
https://doi.org/10.18653/v1/P17-1020
http://www.aclweb.org/anthology/N16-1012
http://www.aclweb.org/anthology/N16-1012
http://arxiv.org/abs/1711.05217
http://dl.acm.org/citation.cfm?id=1611638.1611640
http://dl.acm.org/citation.cfm?id=1611638.1611640
http://arxiv.org/abs/1702.02429
http://arxiv.org/abs/1702.02429
http://arxiv.org/abs/1610.00388
http://arxiv.org/abs/1610.00388
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1506.03340
http://www.aclweb.org/anthology/D13-1158
http://www.aclweb.org/anthology/D13-1158

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(9):1735–
1780.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In ICLR.

Hongyan Jing and Kathleen R. McKeown. 2000. Cut
and paste based text summarization. In Proceed-
ings of the 1st North American Chapter of the As-
sociation for Computational Linguistics Conference,
NAACL 2000, pages 178–185, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Yuta Kikuchi, Tsutomu Hirao, Hiroya Takamura, Man-
abu Okumura, and Masaaki Nagata. 2014. Single
document summarization based on nested tree struc-
ture. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 315–320, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In ICLR.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization - step one: Sentence compres-
sion. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial
Intelligence, pages 703–710. AAAI Press.

Chen Li, Yang Liu, Fei Liu, Lin Zhao, and Fuliang
Weng. 2014. Improving multi-documents summa-
rization by sentence compression based on expanded
constituent parse trees. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 691–701. Asso-
ciation for Computational Linguistics.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. arXiv preprint, abs/1611.08562.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81, Barcelona, Spain. Association
for Computational Linguistics.

Jeffrey Ling and Alexander Rush. 2017. Coarse-to-fine
attention models for document summarization. In
Proceedings of the Workshop on New Frontiers in
Summarization, pages 33–42. Association for Com-
putational Linguistics.

Annie Louis, Aravind Joshi, and Ani Nenkova. 2010.
Discourse indicators for content selection in summa-
rization. In Proceedings of the 11th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, SIGDIAL ’10, pages 147–156, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Empir-
ical Methods in Natural Language Processing
(EMNLP), pages 1412–1421, Lisbon, Portugal. As-
sociation for Computational Linguistics.

André F. T. Martins and Noah A. Smith. 2009. Sum-
marization with a joint model for sentence extraction
and compression. In Proceedings of the Workshop
on Integer Linear Programming for Natural Lan-
gauge Processing, ILP ’09, pages 1–9, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In EMNLP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pages 1928–
1937, New York, New York, USA. PMLR.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of doc-
uments. In AAAI Conference on Artificial Intelli-
gence.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In CoNLL.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. NAACL-HLT.

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International
Conference on Machine Learning, volume 28 of

http://dl.acm.org/citation.cfm?id=974305.974329
http://dl.acm.org/citation.cfm?id=974305.974329
http://www.aclweb.org/anthology/P14-2052
http://www.aclweb.org/anthology/P14-2052
http://www.aclweb.org/anthology/P14-2052
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=647288.721086
http://dl.acm.org/citation.cfm?id=647288.721086
http://dl.acm.org/citation.cfm?id=647288.721086
https://doi.org/10.3115/v1/D14-1076
https://doi.org/10.3115/v1/D14-1076
https://doi.org/10.3115/v1/D14-1076
http://arxiv.org/abs/1611.08562
http://arxiv.org/abs/1611.08562
http://arxiv.org/abs/1611.08562
http://www.aclweb.org/anthology/W04-1013
http://www.aclweb.org/anthology/W04-1013
http://aclweb.org/anthology/W17-4505
http://aclweb.org/anthology/W17-4505
http://dl.acm.org/citation.cfm?id=1944506.1944533
http://dl.acm.org/citation.cfm?id=1944506.1944533
http://dl.acm.org/citation.cfm?id=1611638.1611639
http://dl.acm.org/citation.cfm?id=1611638.1611639
http://dl.acm.org/citation.cfm?id=1611638.1611639
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1802.08636
http://arxiv.org/abs/1802.08636
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v28/pascanu13.html

Proceedings of Machine Learning Research, pages
1310–1318, Atlanta, Georgia, USA. PMLR.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In ICLR.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163. Association
for Computational Linguistics.

Xian Qian and Yang Liu. 2013. Fast joint compres-
sion and summarization via graph cuts. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1492–1502,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In ICLR.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Mike Schuster, Kuldip K. Paliwal, and A. General.
1997. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. Association for Computational Linguistics.

Jun Suzuki and Masaaki Nagata. 2016. Rnn-based
encoder-decoder approach with word frequency es-
timation. In EACL.

Swabha Swayamdipta, Ankur P. Parikh, and Tom
Kwiatkowski. 2017. Multi-mention learning for
reading comprehension with neural cascades. arXiv
preprint, abs/1711.00894.

Chuanqi Tan, Furu Wei, Nan Yang, Weifeng Lv, and
Ming Zhou. 2018. S-net: From answer extraction to
answer generation for machine reading comprehen-
sion. In AAAI.

Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017.
Abstractive document summarization with a graph-
based attentional neural model. In ACL.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2016. Order matters: Sequence to sequence for sets.
In International Conference on Learning Represen-
tations (ICLR).

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Xun Wang, Yasuhisa Yoshida, Tsutomu Hirao, Kat-
suhito Sudoh, and Masaaki Nagata. 2015. Sum-
marization based on task-oriented discourse parsing.
IEEE/ACM Trans. Audio, Speech and Lang. Proc.,
23(8):1358–1367.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3-4):229–256.

David Zajic, Bonnie Dorr, and Richard Schwartz. 2004.
Bbn/umd at duc-2004: Topiary. In HLT-NAACL
2004 Document Understanding Workshop, pages
112–119, Boston, Massachusetts.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou.
2017. Selective encoding for abstractive sentence
summarization. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1095–
1104. Association for Computational Linguistics.

http://www.aclweb.org/anthology/D13-1156
http://www.aclweb.org/anthology/D13-1156
http://aclweb.org/anthology/D15-1044
http://aclweb.org/anthology/D15-1044
http://arxiv.org/abs/1711.00894
http://arxiv.org/abs/1711.00894
http://arxiv.org/abs/1706.04815
http://arxiv.org/abs/1706.04815
http://arxiv.org/abs/1706.04815
https://doi.org/10.1109/TASLP.2015.2432573
https://doi.org/10.1109/TASLP.2015.2432573
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.18653/v1/P17-1101
https://doi.org/10.18653/v1/P17-1101

Supplementary Materials

A Model Details

A.1 Convolutional Encoder

Here we describe the convolutional sentence rep-
resentation used in Sec. 2.1.1. We use the tempo-
ral convolutional model proposed by Kim (2014)
to compute the representation of every individual
sentence in the document. First, the words are con-
verted to the distributed vector representation by a
learned word embedding matrix Wemb. The se-
quence of the word vectors from each sentence is
then fed through 1-D single-layer convolution fil-
ters with various window sizes (3, 4, 5) to capture
the temporal dependencies of nearby words and
then followed by relu non-linear activation and
max-over-time pooling. The convolutional repre-
sentation rj for the jth sentence is then obtained
by concatenating the outputs from the activations
of all filter window sizes.

A.2 Abstractor

In this section we discuss the architecture choices
for our abstractor network in Sec. 2.2. At a high-
level, it is a sequence-to-sequence model with at-
tention and copy mechanism (but no coverage).
Note that the abstractor network is a separate neu-
ral network from the extractor agent without any
form of parameter sharing.

Sequence-Attention-Sequence Model We use
a standard encoder-aligner-decoder model (Bah-
danau et al., 2015; Luong et al., 2015) with the
bilinear multiplicative attention function (Luong
et al., 2015), fatt(hi, zj) = h>i Wattnzj , for the
context vector ej . We share the source and target
embedding matrix Wemb as well as output projec-
tion matrix as in Inan et al. (2017); Press and Wolf
(2017); Paulus et al. (2018).

Copy Mechanism We add the copying mech-
anism as in See et al. (2017) to extend the de-
coder to predict over the extended vocabulary of
words in the input document. A copy probability
pcopy = σ(v>ẑ ẑj + v

>
s zj + v

>
wwj + b) is calculated

by learnable parameters v’s and b, and then is used
to further compute a weighted sum of the probabil-
ity of source vocabulary and the predefined vocab-
ulary. At test time, an OOV prediction is replaced
by the document word with the highest attention
score.

A.3 Actor-Critic Policy Gradient

Here we discuss the details of the actor-critic pol-
icy gradient training. Given the MDP formulation
described in Sec. 3.2 , the return (total discounted
future reward) is

Rt =

Ns∑
t=1

γtr(t+ 1) (9)

for each recurrent step t. To learn a optimal policy
π∗ that maximize the state-value function:

V π∗
(c) = Eπ∗ [Rt|ct = c]

we will make use of the action-value function

Qπθ(c, j) = Eπθ [Rt|ct = c, jt = j]

We then take the policy gradient theorem and
then substitute the action-value function with the
Monte-Carlo sample:

∇θJ(θ) = Eπθ [∇θlogπθ(c, j)Qπθ(c, j)] (10)

=
1

Ns

Ns∑
t=1

∇θlogπθ(ct, jt)Rt (11)

which runs a single episode and gets the return (es-
timate of action-value function) by sampling from
the policy πθ, where Ns is the total number of
sentences the agent extracts. This gradient up-
date is also known as the REINFORCE algorithm
(Williams, 1992).

The vanilla REINFORCE algorithm is known
for high variance. To mitigate this problem we
add a critic network with trainable parameters θc
having the same structure as the pointer-network’s
decoder (described in Sec. 2.1.2) but change the fi-
nal output layer to regress the state-value function
V πθa,ω(c). The predicted value bθc,ω(c) is called
the baseline and is subtracted from the action-
value function to estimate the advantage

Aπθ(c, j) = Qπθa,ω(c, j)− bθc,ω(c)

where θ = {θa, θc, ω} denotes the set of all train-
able parameters. The new policy gradient for
our extractor can be estimated by substituting the
action-value function in Eqn. 10 by the advantage
and then use Monte-Carlo samples (use Rt to esti-

Figure 3: RL learning curve.

mate Q):21

∇θa,ωJ(θa, ω) ≈

1

Ns

Ns∑
t=1

[∇θa,ωlogπθ(c, j)Aπθ(c, j)]
(12)

Here we also show an interesting finding of the
effect adding the EOE action. In Fig. 3, we can
see that the average reward is low in the beginning
but quickly goes up after the agent picks up the
EOE action. The low beginning reward is because
the agent does not choose the EOE action hence
keep getting zero rewards when extracting extra
sentences, which lowers the average.

A.4 Sentence Selection Baseline ff-ext
In this subsection, we describe the detailed net-
work structure of the feed-forward extractor base-
line (ff-ext). Following the hierarchical sentence
representation described in Sec. 2.1.1, if we add
another assumption that there exists a sequence
ji1, ji2, . . . , jiNs where ji1 < ji2 < · · · < jiNs
such that

[di1, di2, · · · , diNd] = xi and

[g(dji1), g(dji2), · · · , g(djiNs)] = yi (13)

i.e., the extracted document are summarized in the
order as is, we could apply the following feed-
forward structure for sentence selection. We first
learn a document representation by

x̂ = tanh(Wd
1

Nd

Nd∑
j=1

hj + bd) (14)

where Nd, Ns each denotes the number of sen-
tences in the document x and the summary y re-
spectively. And then we compute the extraction
probability:

P (dj = 1|hj , x̂) = σ(Wchj + h>j Wsx̂+ b)

21We found that updating with mini-batch of episodes and
standardizing Rt over all time steps and all episodes within
the batch helps converging.

for each sentence in the document. Assuming we
have the groundtruth extraction labels j1, . . . , jNs ,
the above formulation treats sentence selection
as a sequence of binary classification problems,
whereW s and bs are trainable parameters. We can
therefore train the sentence selection network end-
to-end by cross-entropy loss, where W s and bs are
trainable parameters.

At test time, the feed-forward extractor chooses
the top-k sentences and then concatenates them as
the original order in the document. Note that we
still refer to this network as feed-forward extractor
(ff-ext) to distinguish from the pointer network ex-
tractor (rnn-ext) though it contains recurrent struc-
ture.

B Training Details

B.1 Dataset Details

We use the CNN/Daily Mail dataset first proposed
by Hermann et al. (2015) for reading compre-
hension task. This dataset has been modified for
summarization by Nallapati et al. (2017). This
dataset differs from previous Gigaword dataset
(Rush et al., 2015) in the length of the text: both
documents and summaries for CNN/Daily Mail is
much longer. The standard split of the dataset con-
tains 287,227 documents for training, 13,368 doc-
uments for validation, and 11,490 for testing. Note
that the original release of this dataset by Hermann
et al. (2015) is an anonymized version, where the
named entities are anonymized and treated as a
single word in the evaluation n-gram matching.
On the other hand, See et al. (2017) proposed
to use the non-anonymized, original-text version
of the dataset. For a fair comparison to prior
works, we show results on both versions of the
dataset. The experiment runs training and evalu-
ation for each version separately (but we transfer
the same tuned hyperparameters from original to
anonymized version).

The DUC-2002 dataset contains 567 document-
summary pairs for single-document summariza-
tion. Due to its small size, we utilize it in a
test-only setup: we directly use the CNN/Daily
Mail (original text) trained model to summa-
rize the DUC documents for testing generaliza-
tion/transfer our models. The results of See et al.
(2017) on DUC is obtained by running their pub-
licly available pretrained model. We evaluate the
results using the official ROUGE F1 script.

B.2 Hyperparameter Details

All hyper-parameters are tuned on the validation
set of the original text version of CNN/DM. We
use mini-batches of 32 samples for all the training.
Adam optimizer (Kingma and Ba, 2014) is used
with learning rate 0.001 for ML and 0.0001 for
RL training (other hyper-parameters at their de-
fault). We apply gradient clipping (Pascanu et al.,
2013) using 2-norm of 2.0. We do not use any reg-
ularization technique except early-stopping. We
also found that halving the learning rate whenever
validation loss stops decreasing speeds up conver-
gence. For RL training, we use γ = 0.95 for
the discount factor in Eqn. 9. We first train the
abstractor and extractors separately until conver-
gence with maximum-likelihood objectives, then
apply RL training on the trained sub-modules. For
all LSTM-RNNs we use 256 hidden units. We use
single layer LSTM-RNN with 256 hidden units for
all models. The initial states of RNN are learned
for our extractor agent. For the abstractor net-
work, we learn a linear mapping to transform the
encoder final states to the decoder initial states.
We also train a word2vec (Mikolov et al., 2013)
of 128 dimension on the same corpus to initialize
the embedding matrix for all maximum-likelihood
trained models and the embedding matrix is up-
dated during training. We set a vocabulary size of
30000 most common words in the training set. For
saving the memory space in training, we truncate
the input article sentences to a maximum length of
100 tokens and summary sentences to 30 tokens
(note that this is counted at the sentence-level for
our abstractor training). We use all possible sen-
tence pairs within every summary without limit.
At test time, the length of input is not limited and
the generation limit remains 30 maximum tokens
for the abstractor. For all non-RL models, the
number of sentences to extract is tuned on the val-
idation set. For the reranking (see Sec. 3.3), we
set N = 2 (bi-gram) and k = 5 (beam size).22

The diversity ratio of the diverse beam-search (Li
et al., 2016) is set to 1.0.

22Due to the fact that the size of the reranking list is expo-
nential to the number of sentences of the generated summary
n, we pruned the beam so as to allow completion (of dev-set
summarization) in a reasonable amount of time, as follow-
ing: for n ≤ 5 , we use our standard beam size of k = 5,
but for larger n values, we use gradually-reduced k values:
(6, 4), (7− 8, 3), (9+, 2) for (n, k).

B.3 Training Speed
It took a total of 19.71 hours23 to train our model.
On the other hand, See et al. (2017) reported more
than 78 hours of training. The training speed gain
is mainly from the shortened input/target pairs of
our abstractor model. Since our encoder-decoder-
aligner structure operates on sentence pair, it trains
much faster the the document-summary pair used
in the pointer-generator model (See et al., 2017).
We also report here the speed of training our ab-
stractor as time per training update.24 Our abstrac-
tor only requires 0.54 seconds per updates while
See et al. (2017) needs 3.42. For all our speed ex-
periments we use K40 GPUs (similar to See et al.
(2017). The reduced sequence length gives us an
advantage of 6x. Also, the model proposed by See
et al. (2017) needs careful scheduling of the sen-
tence lengths.

C Generation Samples

Please see Fig. 4 and Fig. 5 for the output ex-
amples (see the discussion of this example in
Sec. 7.2).

234.15 hours for the abstractor, 15.56 hours for the RL
training. Extractor ML training can be run at the same time
with abstractor training and is approximately 1.5 hours.

24We use their publicly available code and run training
(without coverage mechanism) on our machine for a fair com-
parison. The number of vocabulary, embedding dimension,
RNN hidden units are also set to the same as our model. We
set their maximum encoder and decoder steps to 400 and 100
respectively, as reported in their paper.

Source document
*[the oxford university women ’s boat race team were rescued from the thames by the royal national
lifeboat institution (rnli) on wednesday after being overcome by choppy waters .] §[crew members
from the chiswick rnli station came to the assistance of the oxford crew and their cox , who were
training for the boat race which - along with the men ’s race - takes place on saturday , april 11
.] †[after the rowers were returned safely to putney , the sunken eight was recovered and returned to
oxford ’s base .] ‡[the royal national lifeboat institution come to the assistance of the oxford university
women ’s team .] the oxford crew were training on the thames for the boat race which takes place
on saturday , april 11 . the rnli revealed the conditions were caused by strong wind against the tide
creating three successive waves that poured over the boat ’s riggers , ‘ creating an influx of water
that could not be managed by the craft ’s bilge pump ’ . in a statement rnli helmsman ian owen said
: ‘ while we have rescued quite a number of rowers over the years , this is the first time i ’ve been
involved in helping such a prestigious team . ‘ the weather can be unpredictable on the thames , and
the oxford university team dealt with the situation as safely and calmly as possible . we wish them all
the best for their upcoming race . ’ chiswick and tower stations are the busiest in the country , and
the rnli has saved over 3,600 people since the service began in 2002 . the rnli alternative boat race
fundraising event on april 10 takes place the day before the bny mellon boat race on the same famous
stretch of river . for more information , please visit : rnli.org / boatrace .

Ground truth summary
the crew were training for the boat race which takes place on april 11 .
the sunken eight was recovered and returned to oxford ’s base .
the choppy conditions were caused by strong wind against the tide creating three successive waves
that poured over the boat ’s riggers .
rnn-ext + abs + RL (ROUGE-1: 48.54, ROUGE-2: 27.72 ROUGE-L: 48.54)
*the oxford university women ’s boat race team were rescued from the thames by the royal national
lifeboat institution .
§crew members were training for the boat race which takes place on saturday .
†the rowers were returned to oxford ’s base .
‡the royal national lifeboat institution come to the assistance of the oxford university women ’s team
.
+rerank (ROUGE-1: 60.42, ROUGE-2: 42.55, ROUGE-L: 60.42)
*the oxford university women ’s boat race team were rescued from the thames .
§crew members were training for the boat race which takes place on saturday .
†the sunken eight was recovered and returned to oxford ’s base .
‡the royal national lifeboat institution come to the assistance of the team .

Figure 4: Example from the dataset showing the generated summary of our best models. The col-
ored (marked) sentences correspond to our extractor’s sentence selection. The listed ROUGE scores are
computed for this specific example.

Source document
(cnn) have mercy ! lifetime has its follow-up to its “ unauthorized saved by the bell ” tv movie
: the network is now taking on full house . *[the female-skewing cable network has greenlit “ the
unauthorized full house story ” (working title) , the hollywood reporter has learned .] §[in the same
vein as its “ saved by the bell ” pic , lifetime ’s full house story will look at the rise of the cast –
including john stamos , bob saget and the mary-kate and ashley olsen – and explore the pressure they
faced to balance idyllic family life on the show with the more complicated reality of their own lives
outside the series . additionally , it will look at the warm bond that grew between the cast as the show
became one of america ’s most beloved family sitcoms .] †[casting will begin immediately . an air
date for the “ full house ” tell-all has yet to be determined .] see more broadcast tv ’s returning shows
2015-16 . ‡[ron mcgee , who penned the “ unauthorized saved by the bell story , ” will write the “
full house ” take . the telepic will be produced by the bell team of front street pictures and ringaling
productions , with harvey kahn and stephen bulka also on board to exec produce .] for lifetime ,
the news comes after its two-hour bell take fizzled on labor day 2014 . despite tons of build-up and
excitement from diehard fans of the original comedy series , the bell take drew only 1.6 million total
viewers , with 1.1 million viewers among the 18-49 and 25-54 demographics . that pic was based on
former star dustin diamond ’s behind the bell 2009 tell-all , with dylan everett starring as mark-paul
gosselaar and sam kindseth as diamond . full house aired on abc from 1987 to 1995 . netflix this month
revived the beloved family comedy as “ fuller house , ” with original stars candace cameron-bure (
d.j.) , her on-screen sister , jodie sweetin (stephanie) , and best friend andrea barber (kimmy) , in
a 13-episode follow-up series . from its start as an unassuming family comedy in 1987 to its eventual
wildly popular 192-episode run , “ full house ” was “ the little sitcom that could . ” it made huge
stars of its cast – from bob saget and dave coulier , who were grinding away on the standup circuit ,
to john stamos breaking hearts on general hospital , and the olsen twins . see the original story at the
hollywood reporter ’s website . 2015 the hollywood reporter . all rights reserved .

Ground truth summary
the network has reportedly greenlit the tell-all .
lifetime previously did an unauthorized movie on “ saved by the bell ”
rnn-ext + abs + RL (ROUGE-1: 25.00, ROUGE-2: 7.41 ROUGE-L: 25.00)
*the female-skewing cable network has greenlit “ the unauthorized full house story ”
§the cast will look at the warm bond that grew between the cast .
‡ron mcgee will write the “ full house ” take .
†casting will begin immediately .
+rerank (ROUGE-1: 37.93, ROUGE-2: 17.86, ROUGE-L: 37.93)
*the female-skewing cable network has greenlit “ the unauthorized full house story ”
§lifetime ’s full house story will look at the rise of the cast .
‡ron mcgee penned the “ unauthorized saved by the bell story ”
†casting will begin immediately .

Figure 5: Example from the dataset showing the generated summary of our best models. The col-
ored (marked) sentences correspond to our extractor’s sentence selection. The listed ROUGE scores are
computed for this specific example.

